

Progress in Laser Risk Reduction for 1 Micron Lasers at GSFC

William Heaps and Anne-Marie Novo-Gradac

NASA Goddard Space Flight Center Laser and Electro-Optics Branch, 554.0 Greenbelt, MD 20771

Desired Lidar Measurements

Altimetry Lidar

· Ice Sheet Mass Balance

· Vegetation Canopy

· Land Topography

Backscatter Lidar

· Cloud

• Aerosol Density = I_S/I_T Range = $(c/2)T_{arrival}$ Transmit
Pulse I_S Return $T_{Arrival}$

Differential Absorption Lidar (DIAL)

· Ozone

· Carbon Dioxide

Doppler Lidar

- · Wind Fields
- River Flow Velocity = $(\lambda/2)$ $f_{Doppler}$ Transmit Pulse Return Frequency

Why is space so hostile to lasers?

- Long Term Reliability
 - -Impossible to service spacecraft.
 - Long development times for missions.
- Vacuum
- Vibration on launch
- Thermal Environment
- Contamination
- Reliability of components

Functional Organization of LRRP Tasks at GSFC

- One Micron Laser Development
 - Oscillator Architectures
 - Amplifier Architectures
 - Seeding
- Reliability Issues
 - High Power Laser Diode Arrays
 - Environmental Effects
- Space Lidar Enabling Hardware
 - Frequency Conversion & Nonlinear Materials
 - Detectors
- Knowledge Capture and Management

Laser Diode Reliability

Goals:

- Quantify effect of operational and environmental parameters on Laser Diode Array (LDA) performance.
- Develop procedures for purchasing, handling, storage and operation.
- Develop prediction/screening capability.
- Enable improved reliability and performance of future laser missions.

LDA Diagnostic Capabilities

- Optical power measurement
 - Average
 - Spatially resolved
 - Polarization resolved
 - Temporally resolved
- Electrical parameters
 - Voltage
 - Current
 - Efficiency
- Thermal Profiling
 - Temporally, spatially resolved surface imaging
 - Thermal modeling
- Spectral Measurement
 - Spatially, temporally Averaged
 - Time-resolved spectroscopy
 - Spatially resolved spectroscopy
- Facet Microscopy
 - Near, dark field
 - Extended focal imaging
 - Side view

SEM

20x Bright Field Facet Image of G18 Array

S/N:22498

S/N:22523

LDA Characterization

IR Inspection - Temporally Resolved IR Measurements

Correlation Between IR and Microscope Images

Power / Temperature Cycling

	Constant Temperature	Temperature Cycled
Constant Power	2 G2's 2 G4's	2 G4's
Power Cycled	2 G4's	2 G2's 2 G4's

LDA IR Images of G1740 from TCP Test

7-9-2003 *Initial*

12-11-2003 after 110.000.000 pulses

6-10-2004 after 200.000.000 pulses

DPA 1776: Cross-section Analysis

D2 L5

D2 L3

Laser Development: 1 micron laser

- Goal: Develop and demonstrate technologies leading to a diode-pumped 1-micron, 1Joule 100 Hz laser for spacebased operations
- Design Features:
 - Several oscillator designs
 - Three optical amplifier stages.
 - Frequency stabilized 1064 nm laser seeder unit.
 - Robust opto-mechanical design.
 - Status of effort:
 - Oscillator assembly in process.
 - Amplifier in assembly
 - First order packaging design complete
 - Laser seeder design complete, packaging effort underway.

Oscillator Development

'Heritage' Task Objectives

- A MLA-like low power (15mJ, 40-100 Hz) laser for vacuum life test. PLUS
 - Increase the laser pulse repetition rate (from 40 Hz to 100 Hz)
 - Improved electronics design (automatically sense of bars open).
 - Improved optical design (spatial mode and pointing stability).
 - Improved laser lifetime (derating of laser diodes by 40%)
 - Following the flight build protocols.
- Will be used for contamination test for different adhesive and material under controlled fashion.
- The knowledge gained from this task will greatly reduce the risk for flight projects with the similar laser design/requirements

MLA Laser

Heritage Laser Packaging

Heritage Laser Breadboad Development

- Developed a breadboard that could be easily built and modified
- Recent results:
 - highly stable TEMoo operation with a 2.2 mm thick slab
 - high repetition rates (~200 Hz) do not appear to be a problem
 - single longitudinal mode operation favored
- Testing with other slab thicknesses (1.2 mm, 1.4 mm, and 1.7 mm) is planned.

Breadboard Oscillator Performance

Diode pump current: 75A, Laser output: 2.6mJ

Breadboard Longitudinal Modes

Dual Mode

Single Mode

High-Pulse-Rate Laser

- Goal: Develop a reliable, high-pulse-rate (1-10 kHz) laser with pulse energy greater than 0.5 mJ for altimetry applications.
- Approach: End-pumped lasers using the new CW fibercoupled diode arrays now available. These devices typically provide 10 to 40 watts of CW pump light from a 400-800 micron aperture (0.2 numerical aperture).
- Issues to be addressed:
 - laser energetics and general feasibility of approach
 - pump coupling and resonator design trades
 - limitations due to thermal loading
 - active versus passive Q-switching
 - monolithic versus component design

High Rep Rate Setup with Passive Q-switch

Pump Head

Laser Cavity

High Rep Rate Performance with Acousto-Optic Q-switch and CW Pumping

 \sim 440 μ J, \sim 9 ns (diode: 19.0A CW)

 \sim 410 µJ, \sim 9 ns (diode: 20.0A CW)

 \sim 500 μ J, \sim 8 ns (diode: 21.3A CW)

- 15 cm cavity, flat/flat
- R = 80% output coupler
- Beam profiles captured in "transition region", not far field

High Rep Rate Results with AO Q-switch and QCW Pumping

- 200 µs pump pulse width, 1 kHz
- Pumping conditions: 26.5 A, 20% duty cycle, ~18 watts peak optical
- Output energy ~ 0.5 mJ, pulse width = 7.9 nsec, $\sim 14\%$ optical-to-optical efficiency

Amplifier Architecture

100 Hz, 20 mJ Oscillator

Amplifier Slabs

Amp Slab Thermal Analysis

G18 Laser Diodes

Amplifier Small Signal Gain Measurement

Amplifier Gain Temperature Dependence

Environmental Effects

Goals:

- Understand laser induced optical damage as a function of materials, cleaning processes, operational environments, and laser wavelength.
- Develop database of damage thresholds for commonly used adhesives and other flight materials.
- Evaluate radiation tolerance of laser diodes and nonlinear optical components.

Detectors & Receivers

- Optical detectors with photon counting sensitivity over the 1.0 -2.0 micron wavelength range:
- Quantum efficiency: 10 70%
- Detector size: 200 µm diameter
- Dark counts < 100 kcps
- Max count rate > 10 Mcps
- Solid State APD: InGaAs photocathode, silicon or InAlAs avalanche region.

Frequency Conversion Technology & Materials

- Develop and demonstrate efficient non-linear optical technologies for the conversion of 1-micron pump laser light into alternate wavelengths required for various LIDAR measurements.
- Tunable IR range for profiling CO2
- Tunable, narrow band UV range for profiling ozone.
- Investigate the reliability and durability of nonlinear optical materials used in frequency conversion and in laser oscillator technologies.
- Develop efficient 1-micron to UV wavelength conversion technology to provide tunable, pulsed UV source capable of space-based operation in future NASA missions including Differential Absorption Lidar (DIAL) measurement of O3.

Risk Factors addressed by LRRP Tasks

Conclusions

- Laser Risk Reduction Program is in its fourth year
- Effort supports Earth Science, Space Science as well as the new Exploration Program
- Variety of technologies to improve laser reliability
 - Thermal Management
 - Reliability of components (particularly pump diodes)
 - Contamination
 - Optical Mounts
 - Laser Architecture

We gratefully acknowledge the support of the Earth Science Technology Office and the Office of Exploration

